Hyperbolic geometry and homotopic homeomorphisms of surfaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic surfaces and hyperbolic geometry

Many properties of a projective algebraic variety can be encoded by convex cones, such as the ample cone and the cone of curves. This is especially useful when these cones have only finitely many edges, as happens for Fano varieties. For a broader class of varieties which includes Calabi-Yau varieties and many rationally connected varieties, the Kawamata-Morrison cone conjecture predicts the st...

متن کامل

Hyperbolic surfaces of $L_1$-2-type

In this paper, we show that an $L_1$-2-type surface in the three-dimensional hyperbolic space $H^3subset R^4_1$ either is an open piece of a standard Riemannian product $ H^1(-sqrt{1+r^2})times S^{1}(r)$, or it has non constant mean curvature, non constant Gaussian curvature, and non constant principal curvatures.

متن کامل

Lorentzian spectral geometry for globally hyperbolic surfaces

The fermionic signature operator is analyzed on globally hyperbolic Lorentzian surfaces. The connection between the spectrum of the fermionic signature operator and geometric properties of the surface is studied. The findings are illustrated by simple examples and counterexamples.

متن کامل

Homotopic Curves on Surfaces

In the following, a surface is always a compact, orientable, twodimensional manifold with or without boundary, a closed surface is one without boundary, and a simple, closed curve on a surface is a closed, connected, one-dimensional submanifold. For simplicity in referring to curves, no notational distinction is made between the embedding of the circle and the image under the embedding—the cont...

متن کامل

Rotation Distance, Triangulations of Planar Surfaces and Hyperbolic Geometry

In a beautiful paper, Sleator, Tarjan and Thurston solved the problem of maximum rotation distance of two binary trees. Equivalently they solved the problem of rotation distance of triangulations on the disk. We extend their results to rotation distance of triangulations of other planar surfaces. We give upper and lower bounds for this problem. Equivalently, by duality, one can interpret our re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometriae Dedicata

سال: 2014

ISSN: 0046-5755,1572-9168

DOI: 10.1007/s10711-014-9975-1